3.14.98 \(\int \frac {\sin ^2(e+f x)}{(g \cos (e+f x))^{3/2} (a+b \sin (e+f x))} \, dx\) [1398]

3.14.98.1 Optimal result
3.14.98.2 Mathematica [C] (warning: unable to verify)
3.14.98.3 Rubi [A] (warning: unable to verify)
3.14.98.4 Maple [C] (warning: unable to verify)
3.14.98.5 Fricas [F]
3.14.98.6 Sympy [F(-1)]
3.14.98.7 Maxima [F]
3.14.98.8 Giac [F]
3.14.98.9 Mupad [F(-1)]

3.14.98.1 Optimal result

Integrand size = 33, antiderivative size = 453 \[ \int \frac {\sin ^2(e+f x)}{(g \cos (e+f x))^{3/2} (a+b \sin (e+f x))} \, dx=\frac {a^2 \arctan \left (\frac {\sqrt {b} \sqrt {g \cos (e+f x)}}{\sqrt [4]{-a^2+b^2} \sqrt {g}}\right )}{\sqrt {b} \left (-a^2+b^2\right )^{5/4} f g^{3/2}}-\frac {a^2 \text {arctanh}\left (\frac {\sqrt {b} \sqrt {g \cos (e+f x)}}{\sqrt [4]{-a^2+b^2} \sqrt {g}}\right )}{\sqrt {b} \left (-a^2+b^2\right )^{5/4} f g^{3/2}}-\frac {2 b}{\left (a^2-b^2\right ) f g \sqrt {g \cos (e+f x)}}-\frac {2 a \sqrt {g \cos (e+f x)} E\left (\left .\frac {1}{2} (e+f x)\right |2\right )}{\left (a^2-b^2\right ) f g^2 \sqrt {\cos (e+f x)}}-\frac {a^3 \sqrt {\cos (e+f x)} \operatorname {EllipticPi}\left (\frac {2 b}{b-\sqrt {-a^2+b^2}},\frac {1}{2} (e+f x),2\right )}{b \left (a^2-b^2\right ) \left (b-\sqrt {-a^2+b^2}\right ) f g \sqrt {g \cos (e+f x)}}-\frac {a^3 \sqrt {\cos (e+f x)} \operatorname {EllipticPi}\left (\frac {2 b}{b+\sqrt {-a^2+b^2}},\frac {1}{2} (e+f x),2\right )}{b \left (a^2-b^2\right ) \left (b+\sqrt {-a^2+b^2}\right ) f g \sqrt {g \cos (e+f x)}}+\frac {2 a \sin (e+f x)}{\left (a^2-b^2\right ) f g \sqrt {g \cos (e+f x)}} \]

output
a^2*arctan(b^(1/2)*(g*cos(f*x+e))^(1/2)/(-a^2+b^2)^(1/4)/g^(1/2))/(-a^2+b^ 
2)^(5/4)/f/g^(3/2)/b^(1/2)-a^2*arctanh(b^(1/2)*(g*cos(f*x+e))^(1/2)/(-a^2+ 
b^2)^(1/4)/g^(1/2))/(-a^2+b^2)^(5/4)/f/g^(3/2)/b^(1/2)-2*b/(a^2-b^2)/f/g/( 
g*cos(f*x+e))^(1/2)+2*a*sin(f*x+e)/(a^2-b^2)/f/g/(g*cos(f*x+e))^(1/2)-a^3* 
(cos(1/2*f*x+1/2*e)^2)^(1/2)/cos(1/2*f*x+1/2*e)*EllipticPi(sin(1/2*f*x+1/2 
*e),2*b/(b-(-a^2+b^2)^(1/2)),2^(1/2))*cos(f*x+e)^(1/2)/b/(a^2-b^2)/f/g/(b- 
(-a^2+b^2)^(1/2))/(g*cos(f*x+e))^(1/2)-a^3*(cos(1/2*f*x+1/2*e)^2)^(1/2)/co 
s(1/2*f*x+1/2*e)*EllipticPi(sin(1/2*f*x+1/2*e),2*b/(b+(-a^2+b^2)^(1/2)),2^ 
(1/2))*cos(f*x+e)^(1/2)/b/(a^2-b^2)/f/g/(b+(-a^2+b^2)^(1/2))/(g*cos(f*x+e) 
)^(1/2)-2*a*(cos(1/2*f*x+1/2*e)^2)^(1/2)/cos(1/2*f*x+1/2*e)*EllipticE(sin( 
1/2*f*x+1/2*e),2^(1/2))*(g*cos(f*x+e))^(1/2)/(a^2-b^2)/f/g^2/cos(f*x+e)^(1 
/2)
 
3.14.98.2 Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 6 vs. order 4 in optimal.

Time = 14.28 (sec) , antiderivative size = 785, normalized size of antiderivative = 1.73 \[ \int \frac {\sin ^2(e+f x)}{(g \cos (e+f x))^{3/2} (a+b \sin (e+f x))} \, dx=\frac {2 \cos (e+f x) (-b+a \sin (e+f x))}{\left (a^2-b^2\right ) f (g \cos (e+f x))^{3/2}}-\frac {a \cos ^{\frac {3}{2}}(e+f x) \left (-\frac {4 a \left (a+b \sqrt {1-\cos ^2(e+f x)}\right ) \left (\frac {a \operatorname {AppellF1}\left (\frac {3}{4},\frac {1}{2},1,\frac {7}{4},\cos ^2(e+f x),\frac {b^2 \cos ^2(e+f x)}{-a^2+b^2}\right ) \cos ^{\frac {3}{2}}(e+f x)}{3 \left (a^2-b^2\right )}+\frac {\left (\frac {1}{8}+\frac {i}{8}\right ) \left (2 \arctan \left (1-\frac {(1+i) \sqrt {b} \sqrt {\cos (e+f x)}}{\sqrt [4]{-a^2+b^2}}\right )-2 \arctan \left (1+\frac {(1+i) \sqrt {b} \sqrt {\cos (e+f x)}}{\sqrt [4]{-a^2+b^2}}\right )-\log \left (\sqrt {-a^2+b^2}-(1+i) \sqrt {b} \sqrt [4]{-a^2+b^2} \sqrt {\cos (e+f x)}+i b \cos (e+f x)\right )+\log \left (\sqrt {-a^2+b^2}+(1+i) \sqrt {b} \sqrt [4]{-a^2+b^2} \sqrt {\cos (e+f x)}+i b \cos (e+f x)\right )\right )}{\sqrt {b} \sqrt [4]{-a^2+b^2}}\right ) \sin (e+f x)}{\sqrt {1-\cos ^2(e+f x)} (a+b \sin (e+f x))}-\frac {\left (a+b \sqrt {1-\cos ^2(e+f x)}\right ) \left (8 b^{5/2} \operatorname {AppellF1}\left (\frac {3}{4},-\frac {1}{2},1,\frac {7}{4},\cos ^2(e+f x),\frac {b^2 \cos ^2(e+f x)}{-a^2+b^2}\right ) \cos ^{\frac {3}{2}}(e+f x)+3 \sqrt {2} a \left (a^2-b^2\right )^{3/4} \left (2 \arctan \left (1-\frac {\sqrt {2} \sqrt {b} \sqrt {\cos (e+f x)}}{\sqrt [4]{a^2-b^2}}\right )-2 \arctan \left (1+\frac {\sqrt {2} \sqrt {b} \sqrt {\cos (e+f x)}}{\sqrt [4]{a^2-b^2}}\right )-\log \left (\sqrt {a^2-b^2}-\sqrt {2} \sqrt {b} \sqrt [4]{a^2-b^2} \sqrt {\cos (e+f x)}+b \cos (e+f x)\right )+\log \left (\sqrt {a^2-b^2}+\sqrt {2} \sqrt {b} \sqrt [4]{a^2-b^2} \sqrt {\cos (e+f x)}+b \cos (e+f x)\right )\right )\right ) \sin ^2(e+f x)}{12 \sqrt {b} \left (-a^2+b^2\right ) \left (1-\cos ^2(e+f x)\right ) (a+b \sin (e+f x))}\right )}{(a-b) (a+b) f (g \cos (e+f x))^{3/2}} \]

input
Integrate[Sin[e + f*x]^2/((g*Cos[e + f*x])^(3/2)*(a + b*Sin[e + f*x])),x]
 
output
(2*Cos[e + f*x]*(-b + a*Sin[e + f*x]))/((a^2 - b^2)*f*(g*Cos[e + f*x])^(3/ 
2)) - (a*Cos[e + f*x]^(3/2)*((-4*a*(a + b*Sqrt[1 - Cos[e + f*x]^2])*((a*Ap 
pellF1[3/4, 1/2, 1, 7/4, Cos[e + f*x]^2, (b^2*Cos[e + f*x]^2)/(-a^2 + b^2) 
]*Cos[e + f*x]^(3/2))/(3*(a^2 - b^2)) + ((1/8 + I/8)*(2*ArcTan[1 - ((1 + I 
)*Sqrt[b]*Sqrt[Cos[e + f*x]])/(-a^2 + b^2)^(1/4)] - 2*ArcTan[1 + ((1 + I)* 
Sqrt[b]*Sqrt[Cos[e + f*x]])/(-a^2 + b^2)^(1/4)] - Log[Sqrt[-a^2 + b^2] - ( 
1 + I)*Sqrt[b]*(-a^2 + b^2)^(1/4)*Sqrt[Cos[e + f*x]] + I*b*Cos[e + f*x]] + 
 Log[Sqrt[-a^2 + b^2] + (1 + I)*Sqrt[b]*(-a^2 + b^2)^(1/4)*Sqrt[Cos[e + f* 
x]] + I*b*Cos[e + f*x]]))/(Sqrt[b]*(-a^2 + b^2)^(1/4)))*Sin[e + f*x])/(Sqr 
t[1 - Cos[e + f*x]^2]*(a + b*Sin[e + f*x])) - ((a + b*Sqrt[1 - Cos[e + f*x 
]^2])*(8*b^(5/2)*AppellF1[3/4, -1/2, 1, 7/4, Cos[e + f*x]^2, (b^2*Cos[e + 
f*x]^2)/(-a^2 + b^2)]*Cos[e + f*x]^(3/2) + 3*Sqrt[2]*a*(a^2 - b^2)^(3/4)*( 
2*ArcTan[1 - (Sqrt[2]*Sqrt[b]*Sqrt[Cos[e + f*x]])/(a^2 - b^2)^(1/4)] - 2*A 
rcTan[1 + (Sqrt[2]*Sqrt[b]*Sqrt[Cos[e + f*x]])/(a^2 - b^2)^(1/4)] - Log[Sq 
rt[a^2 - b^2] - Sqrt[2]*Sqrt[b]*(a^2 - b^2)^(1/4)*Sqrt[Cos[e + f*x]] + b*C 
os[e + f*x]] + Log[Sqrt[a^2 - b^2] + Sqrt[2]*Sqrt[b]*(a^2 - b^2)^(1/4)*Sqr 
t[Cos[e + f*x]] + b*Cos[e + f*x]]))*Sin[e + f*x]^2)/(12*Sqrt[b]*(-a^2 + b^ 
2)*(1 - Cos[e + f*x]^2)*(a + b*Sin[e + f*x]))))/((a - b)*(a + b)*f*(g*Cos[ 
e + f*x])^(3/2))
 
3.14.98.3 Rubi [A] (warning: unable to verify)

Time = 2.04 (sec) , antiderivative size = 420, normalized size of antiderivative = 0.93, number of steps used = 20, number of rules used = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.576, Rules used = {3042, 3381, 3042, 3045, 15, 3116, 3042, 3121, 3042, 3119, 3180, 266, 827, 218, 221, 3042, 3286, 3042, 3284}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sin ^2(e+f x)}{(g \cos (e+f x))^{3/2} (a+b \sin (e+f x))} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sin (e+f x)^2}{(g \cos (e+f x))^{3/2} (a+b \sin (e+f x))}dx\)

\(\Big \downarrow \) 3381

\(\displaystyle -\frac {a^2 \int \frac {\sqrt {g \cos (e+f x)}}{a+b \sin (e+f x)}dx}{g^2 \left (a^2-b^2\right )}+\frac {a \int \frac {1}{(g \cos (e+f x))^{3/2}}dx}{a^2-b^2}-\frac {b \int \frac {\sin (e+f x)}{(g \cos (e+f x))^{3/2}}dx}{a^2-b^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {a^2 \int \frac {\sqrt {g \cos (e+f x)}}{a+b \sin (e+f x)}dx}{g^2 \left (a^2-b^2\right )}+\frac {a \int \frac {1}{\left (g \sin \left (e+f x+\frac {\pi }{2}\right )\right )^{3/2}}dx}{a^2-b^2}-\frac {b \int \frac {\sin (e+f x)}{(g \cos (e+f x))^{3/2}}dx}{a^2-b^2}\)

\(\Big \downarrow \) 3045

\(\displaystyle -\frac {a^2 \int \frac {\sqrt {g \cos (e+f x)}}{a+b \sin (e+f x)}dx}{g^2 \left (a^2-b^2\right )}+\frac {a \int \frac {1}{\left (g \sin \left (e+f x+\frac {\pi }{2}\right )\right )^{3/2}}dx}{a^2-b^2}+\frac {b \int \frac {1}{(g \cos (e+f x))^{3/2}}d(g \cos (e+f x))}{f g \left (a^2-b^2\right )}\)

\(\Big \downarrow \) 15

\(\displaystyle -\frac {a^2 \int \frac {\sqrt {g \cos (e+f x)}}{a+b \sin (e+f x)}dx}{g^2 \left (a^2-b^2\right )}+\frac {a \int \frac {1}{\left (g \sin \left (e+f x+\frac {\pi }{2}\right )\right )^{3/2}}dx}{a^2-b^2}-\frac {2 b}{f g \left (a^2-b^2\right ) \sqrt {g \cos (e+f x)}}\)

\(\Big \downarrow \) 3116

\(\displaystyle -\frac {a^2 \int \frac {\sqrt {g \cos (e+f x)}}{a+b \sin (e+f x)}dx}{g^2 \left (a^2-b^2\right )}+\frac {a \left (\frac {2 \sin (e+f x)}{f g \sqrt {g \cos (e+f x)}}-\frac {\int \sqrt {g \cos (e+f x)}dx}{g^2}\right )}{a^2-b^2}-\frac {2 b}{f g \left (a^2-b^2\right ) \sqrt {g \cos (e+f x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {a^2 \int \frac {\sqrt {g \cos (e+f x)}}{a+b \sin (e+f x)}dx}{g^2 \left (a^2-b^2\right )}+\frac {a \left (\frac {2 \sin (e+f x)}{f g \sqrt {g \cos (e+f x)}}-\frac {\int \sqrt {g \sin \left (e+f x+\frac {\pi }{2}\right )}dx}{g^2}\right )}{a^2-b^2}-\frac {2 b}{f g \left (a^2-b^2\right ) \sqrt {g \cos (e+f x)}}\)

\(\Big \downarrow \) 3121

\(\displaystyle -\frac {a^2 \int \frac {\sqrt {g \cos (e+f x)}}{a+b \sin (e+f x)}dx}{g^2 \left (a^2-b^2\right )}+\frac {a \left (\frac {2 \sin (e+f x)}{f g \sqrt {g \cos (e+f x)}}-\frac {\sqrt {g \cos (e+f x)} \int \sqrt {\cos (e+f x)}dx}{g^2 \sqrt {\cos (e+f x)}}\right )}{a^2-b^2}-\frac {2 b}{f g \left (a^2-b^2\right ) \sqrt {g \cos (e+f x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {a^2 \int \frac {\sqrt {g \cos (e+f x)}}{a+b \sin (e+f x)}dx}{g^2 \left (a^2-b^2\right )}+\frac {a \left (\frac {2 \sin (e+f x)}{f g \sqrt {g \cos (e+f x)}}-\frac {\sqrt {g \cos (e+f x)} \int \sqrt {\sin \left (e+f x+\frac {\pi }{2}\right )}dx}{g^2 \sqrt {\cos (e+f x)}}\right )}{a^2-b^2}-\frac {2 b}{f g \left (a^2-b^2\right ) \sqrt {g \cos (e+f x)}}\)

\(\Big \downarrow \) 3119

\(\displaystyle -\frac {a^2 \int \frac {\sqrt {g \cos (e+f x)}}{a+b \sin (e+f x)}dx}{g^2 \left (a^2-b^2\right )}+\frac {a \left (\frac {2 \sin (e+f x)}{f g \sqrt {g \cos (e+f x)}}-\frac {2 E\left (\left .\frac {1}{2} (e+f x)\right |2\right ) \sqrt {g \cos (e+f x)}}{f g^2 \sqrt {\cos (e+f x)}}\right )}{a^2-b^2}-\frac {2 b}{f g \left (a^2-b^2\right ) \sqrt {g \cos (e+f x)}}\)

\(\Big \downarrow \) 3180

\(\displaystyle -\frac {a^2 \left (\frac {b g \int \frac {\sqrt {g \cos (e+f x)}}{b^2 \cos ^2(e+f x) g^2+\left (a^2-b^2\right ) g^2}d(g \cos (e+f x))}{f}-\frac {a g \int \frac {1}{\sqrt {g \cos (e+f x)} \left (\sqrt {b^2-a^2}-b \cos (e+f x)\right )}dx}{2 b}+\frac {a g \int \frac {1}{\sqrt {g \cos (e+f x)} \left (b \cos (e+f x)+\sqrt {b^2-a^2}\right )}dx}{2 b}\right )}{g^2 \left (a^2-b^2\right )}+\frac {a \left (\frac {2 \sin (e+f x)}{f g \sqrt {g \cos (e+f x)}}-\frac {2 E\left (\left .\frac {1}{2} (e+f x)\right |2\right ) \sqrt {g \cos (e+f x)}}{f g^2 \sqrt {\cos (e+f x)}}\right )}{a^2-b^2}-\frac {2 b}{f g \left (a^2-b^2\right ) \sqrt {g \cos (e+f x)}}\)

\(\Big \downarrow \) 266

\(\displaystyle -\frac {a^2 \left (\frac {2 b g \int \frac {g^2 \cos ^2(e+f x)}{b^2 g^4 \cos ^4(e+f x)+\left (a^2-b^2\right ) g^2}d\sqrt {g \cos (e+f x)}}{f}-\frac {a g \int \frac {1}{\sqrt {g \cos (e+f x)} \left (\sqrt {b^2-a^2}-b \cos (e+f x)\right )}dx}{2 b}+\frac {a g \int \frac {1}{\sqrt {g \cos (e+f x)} \left (b \cos (e+f x)+\sqrt {b^2-a^2}\right )}dx}{2 b}\right )}{g^2 \left (a^2-b^2\right )}+\frac {a \left (\frac {2 \sin (e+f x)}{f g \sqrt {g \cos (e+f x)}}-\frac {2 E\left (\left .\frac {1}{2} (e+f x)\right |2\right ) \sqrt {g \cos (e+f x)}}{f g^2 \sqrt {\cos (e+f x)}}\right )}{a^2-b^2}-\frac {2 b}{f g \left (a^2-b^2\right ) \sqrt {g \cos (e+f x)}}\)

\(\Big \downarrow \) 827

\(\displaystyle -\frac {a^2 \left (\frac {2 b g \left (\frac {\int \frac {1}{b g^2 \cos ^2(e+f x)+\sqrt {b^2-a^2} g}d\sqrt {g \cos (e+f x)}}{2 b}-\frac {\int \frac {1}{\sqrt {b^2-a^2} g-b g^2 \cos ^2(e+f x)}d\sqrt {g \cos (e+f x)}}{2 b}\right )}{f}-\frac {a g \int \frac {1}{\sqrt {g \cos (e+f x)} \left (\sqrt {b^2-a^2}-b \cos (e+f x)\right )}dx}{2 b}+\frac {a g \int \frac {1}{\sqrt {g \cos (e+f x)} \left (b \cos (e+f x)+\sqrt {b^2-a^2}\right )}dx}{2 b}\right )}{g^2 \left (a^2-b^2\right )}+\frac {a \left (\frac {2 \sin (e+f x)}{f g \sqrt {g \cos (e+f x)}}-\frac {2 E\left (\left .\frac {1}{2} (e+f x)\right |2\right ) \sqrt {g \cos (e+f x)}}{f g^2 \sqrt {\cos (e+f x)}}\right )}{a^2-b^2}-\frac {2 b}{f g \left (a^2-b^2\right ) \sqrt {g \cos (e+f x)}}\)

\(\Big \downarrow \) 218

\(\displaystyle -\frac {a^2 \left (\frac {2 b g \left (\frac {\arctan \left (\frac {\sqrt {b} \sqrt {g} \cos (e+f x)}{\sqrt [4]{b^2-a^2}}\right )}{2 b^{3/2} \sqrt {g} \sqrt [4]{b^2-a^2}}-\frac {\int \frac {1}{\sqrt {b^2-a^2} g-b g^2 \cos ^2(e+f x)}d\sqrt {g \cos (e+f x)}}{2 b}\right )}{f}-\frac {a g \int \frac {1}{\sqrt {g \cos (e+f x)} \left (\sqrt {b^2-a^2}-b \cos (e+f x)\right )}dx}{2 b}+\frac {a g \int \frac {1}{\sqrt {g \cos (e+f x)} \left (b \cos (e+f x)+\sqrt {b^2-a^2}\right )}dx}{2 b}\right )}{g^2 \left (a^2-b^2\right )}+\frac {a \left (\frac {2 \sin (e+f x)}{f g \sqrt {g \cos (e+f x)}}-\frac {2 E\left (\left .\frac {1}{2} (e+f x)\right |2\right ) \sqrt {g \cos (e+f x)}}{f g^2 \sqrt {\cos (e+f x)}}\right )}{a^2-b^2}-\frac {2 b}{f g \left (a^2-b^2\right ) \sqrt {g \cos (e+f x)}}\)

\(\Big \downarrow \) 221

\(\displaystyle -\frac {a^2 \left (-\frac {a g \int \frac {1}{\sqrt {g \cos (e+f x)} \left (\sqrt {b^2-a^2}-b \cos (e+f x)\right )}dx}{2 b}+\frac {a g \int \frac {1}{\sqrt {g \cos (e+f x)} \left (b \cos (e+f x)+\sqrt {b^2-a^2}\right )}dx}{2 b}+\frac {2 b g \left (\frac {\arctan \left (\frac {\sqrt {b} \sqrt {g} \cos (e+f x)}{\sqrt [4]{b^2-a^2}}\right )}{2 b^{3/2} \sqrt {g} \sqrt [4]{b^2-a^2}}-\frac {\text {arctanh}\left (\frac {\sqrt {b} \sqrt {g} \cos (e+f x)}{\sqrt [4]{b^2-a^2}}\right )}{2 b^{3/2} \sqrt {g} \sqrt [4]{b^2-a^2}}\right )}{f}\right )}{g^2 \left (a^2-b^2\right )}+\frac {a \left (\frac {2 \sin (e+f x)}{f g \sqrt {g \cos (e+f x)}}-\frac {2 E\left (\left .\frac {1}{2} (e+f x)\right |2\right ) \sqrt {g \cos (e+f x)}}{f g^2 \sqrt {\cos (e+f x)}}\right )}{a^2-b^2}-\frac {2 b}{f g \left (a^2-b^2\right ) \sqrt {g \cos (e+f x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {a^2 \left (-\frac {a g \int \frac {1}{\sqrt {g \sin \left (e+f x+\frac {\pi }{2}\right )} \left (\sqrt {b^2-a^2}-b \sin \left (e+f x+\frac {\pi }{2}\right )\right )}dx}{2 b}+\frac {a g \int \frac {1}{\sqrt {g \sin \left (e+f x+\frac {\pi }{2}\right )} \left (b \sin \left (e+f x+\frac {\pi }{2}\right )+\sqrt {b^2-a^2}\right )}dx}{2 b}+\frac {2 b g \left (\frac {\arctan \left (\frac {\sqrt {b} \sqrt {g} \cos (e+f x)}{\sqrt [4]{b^2-a^2}}\right )}{2 b^{3/2} \sqrt {g} \sqrt [4]{b^2-a^2}}-\frac {\text {arctanh}\left (\frac {\sqrt {b} \sqrt {g} \cos (e+f x)}{\sqrt [4]{b^2-a^2}}\right )}{2 b^{3/2} \sqrt {g} \sqrt [4]{b^2-a^2}}\right )}{f}\right )}{g^2 \left (a^2-b^2\right )}+\frac {a \left (\frac {2 \sin (e+f x)}{f g \sqrt {g \cos (e+f x)}}-\frac {2 E\left (\left .\frac {1}{2} (e+f x)\right |2\right ) \sqrt {g \cos (e+f x)}}{f g^2 \sqrt {\cos (e+f x)}}\right )}{a^2-b^2}-\frac {2 b}{f g \left (a^2-b^2\right ) \sqrt {g \cos (e+f x)}}\)

\(\Big \downarrow \) 3286

\(\displaystyle -\frac {a^2 \left (-\frac {a g \sqrt {\cos (e+f x)} \int \frac {1}{\sqrt {\cos (e+f x)} \left (\sqrt {b^2-a^2}-b \cos (e+f x)\right )}dx}{2 b \sqrt {g \cos (e+f x)}}+\frac {a g \sqrt {\cos (e+f x)} \int \frac {1}{\sqrt {\cos (e+f x)} \left (b \cos (e+f x)+\sqrt {b^2-a^2}\right )}dx}{2 b \sqrt {g \cos (e+f x)}}+\frac {2 b g \left (\frac {\arctan \left (\frac {\sqrt {b} \sqrt {g} \cos (e+f x)}{\sqrt [4]{b^2-a^2}}\right )}{2 b^{3/2} \sqrt {g} \sqrt [4]{b^2-a^2}}-\frac {\text {arctanh}\left (\frac {\sqrt {b} \sqrt {g} \cos (e+f x)}{\sqrt [4]{b^2-a^2}}\right )}{2 b^{3/2} \sqrt {g} \sqrt [4]{b^2-a^2}}\right )}{f}\right )}{g^2 \left (a^2-b^2\right )}+\frac {a \left (\frac {2 \sin (e+f x)}{f g \sqrt {g \cos (e+f x)}}-\frac {2 E\left (\left .\frac {1}{2} (e+f x)\right |2\right ) \sqrt {g \cos (e+f x)}}{f g^2 \sqrt {\cos (e+f x)}}\right )}{a^2-b^2}-\frac {2 b}{f g \left (a^2-b^2\right ) \sqrt {g \cos (e+f x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {a^2 \left (-\frac {a g \sqrt {\cos (e+f x)} \int \frac {1}{\sqrt {\sin \left (e+f x+\frac {\pi }{2}\right )} \left (\sqrt {b^2-a^2}-b \sin \left (e+f x+\frac {\pi }{2}\right )\right )}dx}{2 b \sqrt {g \cos (e+f x)}}+\frac {a g \sqrt {\cos (e+f x)} \int \frac {1}{\sqrt {\sin \left (e+f x+\frac {\pi }{2}\right )} \left (b \sin \left (e+f x+\frac {\pi }{2}\right )+\sqrt {b^2-a^2}\right )}dx}{2 b \sqrt {g \cos (e+f x)}}+\frac {2 b g \left (\frac {\arctan \left (\frac {\sqrt {b} \sqrt {g} \cos (e+f x)}{\sqrt [4]{b^2-a^2}}\right )}{2 b^{3/2} \sqrt {g} \sqrt [4]{b^2-a^2}}-\frac {\text {arctanh}\left (\frac {\sqrt {b} \sqrt {g} \cos (e+f x)}{\sqrt [4]{b^2-a^2}}\right )}{2 b^{3/2} \sqrt {g} \sqrt [4]{b^2-a^2}}\right )}{f}\right )}{g^2 \left (a^2-b^2\right )}+\frac {a \left (\frac {2 \sin (e+f x)}{f g \sqrt {g \cos (e+f x)}}-\frac {2 E\left (\left .\frac {1}{2} (e+f x)\right |2\right ) \sqrt {g \cos (e+f x)}}{f g^2 \sqrt {\cos (e+f x)}}\right )}{a^2-b^2}-\frac {2 b}{f g \left (a^2-b^2\right ) \sqrt {g \cos (e+f x)}}\)

\(\Big \downarrow \) 3284

\(\displaystyle -\frac {a^2 \left (\frac {2 b g \left (\frac {\arctan \left (\frac {\sqrt {b} \sqrt {g} \cos (e+f x)}{\sqrt [4]{b^2-a^2}}\right )}{2 b^{3/2} \sqrt {g} \sqrt [4]{b^2-a^2}}-\frac {\text {arctanh}\left (\frac {\sqrt {b} \sqrt {g} \cos (e+f x)}{\sqrt [4]{b^2-a^2}}\right )}{2 b^{3/2} \sqrt {g} \sqrt [4]{b^2-a^2}}\right )}{f}+\frac {a g \sqrt {\cos (e+f x)} \operatorname {EllipticPi}\left (\frac {2 b}{b-\sqrt {b^2-a^2}},\frac {1}{2} (e+f x),2\right )}{b f \left (b-\sqrt {b^2-a^2}\right ) \sqrt {g \cos (e+f x)}}+\frac {a g \sqrt {\cos (e+f x)} \operatorname {EllipticPi}\left (\frac {2 b}{b+\sqrt {b^2-a^2}},\frac {1}{2} (e+f x),2\right )}{b f \left (\sqrt {b^2-a^2}+b\right ) \sqrt {g \cos (e+f x)}}\right )}{g^2 \left (a^2-b^2\right )}+\frac {a \left (\frac {2 \sin (e+f x)}{f g \sqrt {g \cos (e+f x)}}-\frac {2 E\left (\left .\frac {1}{2} (e+f x)\right |2\right ) \sqrt {g \cos (e+f x)}}{f g^2 \sqrt {\cos (e+f x)}}\right )}{a^2-b^2}-\frac {2 b}{f g \left (a^2-b^2\right ) \sqrt {g \cos (e+f x)}}\)

input
Int[Sin[e + f*x]^2/((g*Cos[e + f*x])^(3/2)*(a + b*Sin[e + f*x])),x]
 
output
(-2*b)/((a^2 - b^2)*f*g*Sqrt[g*Cos[e + f*x]]) - (a^2*((2*b*g*(ArcTan[(Sqrt 
[b]*Sqrt[g]*Cos[e + f*x])/(-a^2 + b^2)^(1/4)]/(2*b^(3/2)*(-a^2 + b^2)^(1/4 
)*Sqrt[g]) - ArcTanh[(Sqrt[b]*Sqrt[g]*Cos[e + f*x])/(-a^2 + b^2)^(1/4)]/(2 
*b^(3/2)*(-a^2 + b^2)^(1/4)*Sqrt[g])))/f + (a*g*Sqrt[Cos[e + f*x]]*Ellipti 
cPi[(2*b)/(b - Sqrt[-a^2 + b^2]), (e + f*x)/2, 2])/(b*(b - Sqrt[-a^2 + b^2 
])*f*Sqrt[g*Cos[e + f*x]]) + (a*g*Sqrt[Cos[e + f*x]]*EllipticPi[(2*b)/(b + 
 Sqrt[-a^2 + b^2]), (e + f*x)/2, 2])/(b*(b + Sqrt[-a^2 + b^2])*f*Sqrt[g*Co 
s[e + f*x]])))/((a^2 - b^2)*g^2) + (a*((-2*Sqrt[g*Cos[e + f*x]]*EllipticE[ 
(e + f*x)/2, 2])/(f*g^2*Sqrt[Cos[e + f*x]]) + (2*Sin[e + f*x])/(f*g*Sqrt[g 
*Cos[e + f*x]])))/(a^2 - b^2)
 

3.14.98.3.1 Defintions of rubi rules used

rule 15
Int[(a_.)*(x_)^(m_.), x_Symbol] :> Simp[a*(x^(m + 1)/(m + 1)), x] /; FreeQ[ 
{a, m}, x] && NeQ[m, -1]
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 266
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{k = De 
nominator[m]}, Simp[k/c   Subst[Int[x^(k*(m + 1) - 1)*(a + b*(x^(2*k)/c^2)) 
^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && FractionQ[m] && I 
ntBinomialQ[a, b, c, 2, m, p, x]
 

rule 827
Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 
 2]], s = Denominator[Rt[-a/b, 2]]}, Simp[s/(2*b)   Int[1/(r + s*x^2), x], 
x] - Simp[s/(2*b)   Int[1/(r - s*x^2), x], x]] /; FreeQ[{a, b}, x] &&  !GtQ 
[a/b, 0]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3045
Int[(cos[(e_.) + (f_.)*(x_)]*(a_.))^(m_.)*sin[(e_.) + (f_.)*(x_)]^(n_.), x_ 
Symbol] :> Simp[-(a*f)^(-1)   Subst[Int[x^m*(1 - x^2/a^2)^((n - 1)/2), x], 
x, a*Cos[e + f*x]], x] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n - 1)/2] && 
 !(IntegerQ[(m - 1)/2] && GtQ[m, 0] && LeQ[m, n])
 

rule 3116
Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[Cos[c + d*x]*(( 
b*Sin[c + d*x])^(n + 1)/(b*d*(n + 1))), x] + Simp[(n + 2)/(b^2*(n + 1))   I 
nt[(b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && 
 IntegerQ[2*n]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3121
Int[((b_)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*Sin[c + d*x]) 
^n/Sin[c + d*x]^n   Int[Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && Lt 
Q[-1, n, 1] && IntegerQ[2*n]
 

rule 3180
Int[Sqrt[cos[(e_.) + (f_.)*(x_)]*(g_.)]/((a_) + (b_.)*sin[(e_.) + (f_.)*(x_ 
)]), x_Symbol] :> With[{q = Rt[-a^2 + b^2, 2]}, Simp[a*(g/(2*b))   Int[1/(S 
qrt[g*Cos[e + f*x]]*(q + b*Cos[e + f*x])), x], x] + (-Simp[a*(g/(2*b))   In 
t[1/(Sqrt[g*Cos[e + f*x]]*(q - b*Cos[e + f*x])), x], x] + Simp[b*(g/f)   Su 
bst[Int[Sqrt[x]/(g^2*(a^2 - b^2) + b^2*x^2), x], x, g*Cos[e + f*x]], x])] / 
; FreeQ[{a, b, e, f, g}, x] && NeQ[a^2 - b^2, 0]
 

rule 3284
Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) 
 + (f_.)*(x_)]]), x_Symbol] :> Simp[(2/(f*(a + b)*Sqrt[c + d]))*EllipticPi[ 
2*(b/(a + b)), (1/2)*(e - Pi/2 + f*x), 2*(d/(c + d))], x] /; FreeQ[{a, b, c 
, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 
0] && GtQ[c + d, 0]
 

rule 3286
Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) 
 + (f_.)*(x_)]]), x_Symbol] :> Simp[Sqrt[(c + d*Sin[e + f*x])/(c + d)]/Sqrt 
[c + d*Sin[e + f*x]]   Int[1/((a + b*Sin[e + f*x])*Sqrt[c/(c + d) + (d/(c + 
 d))*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a* 
d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&  !GtQ[c + d, 0]
 

rule 3381
Int[((cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^( 
n_))/((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[a*(d^2/(a^2 
- b^2))   Int[(g*Cos[e + f*x])^p*(d*Sin[e + f*x])^(n - 2), x], x] + (-Simp[ 
b*(d/(a^2 - b^2))   Int[(g*Cos[e + f*x])^p*(d*Sin[e + f*x])^(n - 1), x], x] 
 - Simp[a^2*(d^2/(g^2*(a^2 - b^2)))   Int[(g*Cos[e + f*x])^(p + 2)*((d*Sin[ 
e + f*x])^(n - 2)/(a + b*Sin[e + f*x])), x], x]) /; FreeQ[{a, b, d, e, f, g 
}, x] && NeQ[a^2 - b^2, 0] && IntegersQ[2*n, 2*p] && LtQ[p, -1] && GtQ[n, 1 
]
 
3.14.98.4 Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 4.32 (sec) , antiderivative size = 1209, normalized size of antiderivative = 2.67

method result size
default \(\text {Expression too large to display}\) \(1209\)

input
int(sin(f*x+e)^2/(g*cos(f*x+e))^(3/2)/(a+b*sin(f*x+e)),x,method=_RETURNVER 
BOSE)
 
output
(-16*b/g*(-1/4/(8*a^2-8*b^2)*2^(1/2)/g/(cos(1/2*f*x+1/2*e)+1/2*2^(1/2))*(- 
2*g*sin(1/2*f*x+1/2*e)^2+g)^(1/2)+1/4/(8*a^2-8*b^2)*2^(1/2)/g/(cos(1/2*f*x 
+1/2*e)-1/2*2^(1/2))*(-2*g*sin(1/2*f*x+1/2*e)^2+g)^(1/2)+1/64*a^2/(a-b)/(a 
+b)/(g^2*(a^2-b^2)/b^2)^(1/4)*2^(1/2)*(ln((2*g*cos(1/2*f*x+1/2*e)^2-g-(g^2 
*(a^2-b^2)/b^2)^(1/4)*(2*g*cos(1/2*f*x+1/2*e)^2-g)^(1/2)*2^(1/2)+(g^2*(a^2 
-b^2)/b^2)^(1/2))/(2*g*cos(1/2*f*x+1/2*e)^2-g+(g^2*(a^2-b^2)/b^2)^(1/4)*(2 
*g*cos(1/2*f*x+1/2*e)^2-g)^(1/2)*2^(1/2)+(g^2*(a^2-b^2)/b^2)^(1/2)))+2*arc 
tan((2^(1/2)*(2*g*cos(1/2*f*x+1/2*e)^2-g)^(1/2)+(g^2*(a^2-b^2)/b^2)^(1/4)) 
/(g^2*(a^2-b^2)/b^2)^(1/4))+2*arctan((2^(1/2)*(2*g*cos(1/2*f*x+1/2*e)^2-g) 
^(1/2)-(g^2*(a^2-b^2)/b^2)^(1/4))/(g^2*(a^2-b^2)/b^2)^(1/4)))/b^2)-1/8*(32 
*cos(1/2*f*x+1/2*e)^3*(-g*(2*sin(1/2*f*x+1/2*e)^4-sin(1/2*f*x+1/2*e)^2))^( 
1/2)*b^2+16*(sin(1/2*f*x+1/2*e)^2)^(1/2)*(1-2*cos(1/2*f*x+1/2*e)^2)^(1/2)* 
(g*(2*cos(1/2*f*x+1/2*e)^2-1)*sin(1/2*f*x+1/2*e)^2)^(1/2)*EllipticE(cos(1/ 
2*f*x+1/2*e),2^(1/2))*b^2-32*cos(1/2*f*x+1/2*e)*(-g*(2*sin(1/2*f*x+1/2*e)^ 
4-sin(1/2*f*x+1/2*e)^2))^(1/2)*b^2-sum(1/_alpha*(8*(g*(2*_alpha^2*b^2+a^2- 
2*b^2)/b^2)^(1/2)*(sin(1/2*f*x+1/2*e)^2)^(1/2)*(1-2*cos(1/2*f*x+1/2*e)^2)^ 
(1/2)*EllipticPi(cos(1/2*f*x+1/2*e),-4*b^2/a^2*(_alpha^2-1),2^(1/2))*_alph 
a^3*b^2-8*b^2*_alpha*(sin(1/2*f*x+1/2*e)^2)^(1/2)*(1-2*cos(1/2*f*x+1/2*e)^ 
2)^(1/2)*EllipticPi(cos(1/2*f*x+1/2*e),-4*b^2/a^2*(_alpha^2-1),2^(1/2))*(g 
*(2*_alpha^2*b^2+a^2-2*b^2)/b^2)^(1/2)+a^2*2^(1/2)*arctanh(1/2*g*(4*_al...
 
3.14.98.5 Fricas [F]

\[ \int \frac {\sin ^2(e+f x)}{(g \cos (e+f x))^{3/2} (a+b \sin (e+f x))} \, dx=\int { \frac {\sin \left (f x + e\right )^{2}}{\left (g \cos \left (f x + e\right )\right )^{\frac {3}{2}} {\left (b \sin \left (f x + e\right ) + a\right )}} \,d x } \]

input
integrate(sin(f*x+e)^2/(g*cos(f*x+e))^(3/2)/(a+b*sin(f*x+e)),x, algorithm= 
"fricas")
 
output
integral(-sqrt(g*cos(f*x + e))*(cos(f*x + e)^2 - 1)/(b*g^2*cos(f*x + e)^2* 
sin(f*x + e) + a*g^2*cos(f*x + e)^2), x)
 
3.14.98.6 Sympy [F(-1)]

Timed out. \[ \int \frac {\sin ^2(e+f x)}{(g \cos (e+f x))^{3/2} (a+b \sin (e+f x))} \, dx=\text {Timed out} \]

input
integrate(sin(f*x+e)**2/(g*cos(f*x+e))**(3/2)/(a+b*sin(f*x+e)),x)
 
output
Timed out
 
3.14.98.7 Maxima [F]

\[ \int \frac {\sin ^2(e+f x)}{(g \cos (e+f x))^{3/2} (a+b \sin (e+f x))} \, dx=\int { \frac {\sin \left (f x + e\right )^{2}}{\left (g \cos \left (f x + e\right )\right )^{\frac {3}{2}} {\left (b \sin \left (f x + e\right ) + a\right )}} \,d x } \]

input
integrate(sin(f*x+e)^2/(g*cos(f*x+e))^(3/2)/(a+b*sin(f*x+e)),x, algorithm= 
"maxima")
 
output
integrate(sin(f*x + e)^2/((g*cos(f*x + e))^(3/2)*(b*sin(f*x + e) + a)), x)
 
3.14.98.8 Giac [F]

\[ \int \frac {\sin ^2(e+f x)}{(g \cos (e+f x))^{3/2} (a+b \sin (e+f x))} \, dx=\int { \frac {\sin \left (f x + e\right )^{2}}{\left (g \cos \left (f x + e\right )\right )^{\frac {3}{2}} {\left (b \sin \left (f x + e\right ) + a\right )}} \,d x } \]

input
integrate(sin(f*x+e)^2/(g*cos(f*x+e))^(3/2)/(a+b*sin(f*x+e)),x, algorithm= 
"giac")
 
output
integrate(sin(f*x + e)^2/((g*cos(f*x + e))^(3/2)*(b*sin(f*x + e) + a)), x)
 
3.14.98.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\sin ^2(e+f x)}{(g \cos (e+f x))^{3/2} (a+b \sin (e+f x))} \, dx=\int \frac {{\sin \left (e+f\,x\right )}^2}{{\left (g\,\cos \left (e+f\,x\right )\right )}^{3/2}\,\left (a+b\,\sin \left (e+f\,x\right )\right )} \,d x \]

input
int(sin(e + f*x)^2/((g*cos(e + f*x))^(3/2)*(a + b*sin(e + f*x))),x)
 
output
int(sin(e + f*x)^2/((g*cos(e + f*x))^(3/2)*(a + b*sin(e + f*x))), x)